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We quote sufficient conditions for evasion of contact in a game of two nonlinear 

objects with integral constraints on the control. 

1. Let t, be a fixed real number. Let the laws of motion of the pursuing vector 
x E En and of the escaping vector y E En be described for t > t, by the vector 
differential equations 

d”z / dt” = L (t, X) -f- a, x = 601 (x1, . . . , x“), li = u (t) E En 

x = coi p,4”‘, xc’, . . * , s@-‘f}; 5(i) = d% / dti, 
fL 1) 

O<i,(k---l 

L (t, X) zzz L (t, xw, . . . , de)n, io, . ‘ . , dk-QTL) 

d’y ! dtl = H (t, Y) + v, y = co1 (y”, . . . 3 y”), 2)= 7I@)E.E 

Y = co1 {y(O), . . . , yV-‘)I; yW s djy / dtJ, 
(1.2) 

O<j< 1-i 

H (t, Y) = H (t, y(Ofl, . . . . , y(o)n, y(‘) I, . . . ) yf*-lq 

Here E” is an n-dimensional Euclidean space, n (v) is an everywhere finite vector- 
valued function, measurable for t > to , 

[t1, t,l c [h), + -1 
whose scalar square we sum on any interval 

, called the control of the pursuer (escaper), X (Y) is the phase 
vector of the pursuer (escaper), L (t, X), H (t, Y) are vector-valued functions con- 
tinuous together with their first-order partial derivatives in all variables, 

We assume that the following condition is satisfied for game (1.1)‘ (1.2): for arbitrary 
collection z* = {t*, X,, Y,}, t, > t, called the (initial) point of the game,and 
for arbitrary players’ controls, the solutions X (t) and Y (t) of Eqs. (1.1) and (1.2). res- 
pectively, in the sense of Carathkodory Cl], with initial values X (t,) =: X,, Y (t*)= 
Y, , exist on the whole interval [t,, + 001. 

The following constraints are imposed on the players’ controls : 
+m 

(1.3) 

(1.4) 
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where p (t, X) > 0 and o (t, Y) > 0 are scalar functions continuously differentiable 
in all the arguments, P > 0 and (f > 0 are fixed constants. 

For objects described by conditions (1.1) - (1.4) we examine the evasion-of-contact 
problem (see [Z, 31): in accordance with the information known to the escaper, at each 

instant t choose the control vector 2, (t) so that the equality J: (ie) = y (t) is not sa- 

tisfied for any finite t . It is assumed that at each instant t the escaper knows the point 

s (t) = {t, X (t), Y (t)} of the game and the vector u (t). 

2, We say that the escaper has a maneuver superiority over the pursuer if one of the 
following two conditions are satisfied: (1) I < k; (2) I = k 

o>p (2.11 

o (t, ,4(O), . * . , p-l)) < p (t, do’, . . ‘ , D-q @. 2) 

as soon as 3.3’) = y(O). 
Theorem on evasion of contact. If the escaper has a maneuver superiority 

over the pursuer, then evasion of contact is possible. Here, for arbitrary initial game point 

zo = {to, X0, Y,) satisfying the condition 5 o(s) # ye(O), by a suitable choice of es- 

cape control 2, = Z, (t) we can ensure the following estimate on the distance E (t) = 

19 (t) 1 , I@ (t) = y (t) - z (t) between the players : 

q(t) = ‘rl (t, x, y) = [j + t2 + 1 x(O) 1” f . . . f 1 S--l) 1” + f y(o) 1” .+ .., 

+ 1 y(‘-1) 1” J”. 

Here 8, es, &a, . . . are positive numbers and y (7) is a monotonically decreasing func- 
tion of its argument , they depend solely on problem (1.1) - (1.4) and are independent 
of the initial values of the players’phase coordinates or of the progress of the game ; 

to c T, < T, < --* is a sequence which depends not only on problem (1.1) - fl. 4) 
but also on the evasion process. 

Following @] we prove the theorem in several advent stages, By (~a* bf = a%’ + 
. . . + Lz”b” we denote the scalar product of the vectors a 63 E” and b E E”, 1 a I= 

(a. a)“. 

8, By virtue of system (1.1). (1.2). for an arbitrary function q = q (8) we have the 
estimate l q-q’ 1 = 1 t + (iPz’) -+ .,. + (dk-1) .L (t, X) + u) + 

(Y’Y’) + se* + W-“).~ (t, Y) + 4 I < rla + rl ( I L (k X) I + 
IfJkY) I+ lul+ Ivl) 

Hence 
Ir’lel+c*(~)+ l~l-+- lIl\<h(rl)$_ lul+ Ivl (3.1) 

where 

h (r) = 1 + r + r a + c* (r) 
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(here the sup in the right-hand side is taken over all possible collections z = (1, X, 
Y} of phase coordinates, satisfying the constraints t > t,, g (t, X, Y) < r). 

We set 
e*(r) = min {I, min (P(t, X))‘/z, min 

7l(t,X,Y)Q n(t,X,Y)<r 
(6(t, Y))‘jg} 

r 

F (r) = $ E*(S) (h ($)-I 6% 
6 

From the continuity of functions e* (s) > 0 and C* (s) > 0 it follows that the fttnc- 

tion $’ (r) is defined and is strictly monotonic on the half-interval [o + m), SO that 
the function I$ (‘) inverse to it grows, also strictly monotoni~lly, on the half.finterval 

(0, a*), where EC* = Em,.,+, F (r) < -j- 00. From relation (3.1) it follows that 

the estimate 

I 
dF (‘16 )I ) < E* (q(f)) (I + ’ u ‘;),;;)y @) ’ ) < 

1 T (p(rJ(r)V’+(t)J +(a6 Y(rNVu(Ql 

(c* (r) < 1 < * ( )) A r is valid for the phase vectors of system (1, l), (1.2) with any ini- 

tial condition {t*, X*, Y*}, t* > ts , and with any controls u (t) and u (t), t, < 
t<co. Sothatwhen It--_* )<1,byvirtueof(1.3),(1.4) 

I F h (t)) - p b-i (t*)) I Q (t - t*) + fr-, + 0) (t - t*p < 
VP* 0 - t*) 

‘p* 0”) = a?+, ff =i+p+o 
and, consequently, 

(3.2) 

rp”(f-- f*)h t E- If*, t, + 6*1 
11* = W*h B* = min {k46* (MT x (rid) 

a* (r) = [ OLf yap lr) !“, x(r) - F;;” 

bet A = A (1~) E En be a differentiable vector-valued function of the variable 

w E E” and let b be an arbitrary vector from ,??_ By the product (&I / aw. b) we 

mean a vector from E”, each of whose components is a scalar product of the gradient 
of the corresponding component of the vector-valued function A by vector b. Then, 

the estimate 
(3.3) 

is obvious for the solutions X (t) and Y (t) of system (1.1). (1.2). Here (the sup is 

taken over all ri (b, X, Y) d r; f, w CE E, I f I = I w I = 1 ) 
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r (4 = max {k (4 (h (4)) 
R (t) = I- b (t)) + r h (Q) {(P 6 x (t)))“* I 24 (4 I + 

(@ (6 y (t)))“~ I v (t) I 1 

(3.4) 

If 1 < k , it is easily verified that 

I dH hty (t)) 1 + , c&l) (t) I< R (t) (3.5) 

I.& us introduce the notion of a special control for the escaper. At first we exa- 
mi.k the case 1 = k. Let c CE (0, (3e29-1) be some constant and 60 e C be an 
arbitrary vector satisfying the constraint 

10 I<c (4.1) 

Then, for arbitrary control FL (s), s > to, there exists a control v,, C (s) such that 

vC&, C (s) = U (s) + 21 0 (4.2) 

Let & > tO and t > t, be the arbitrary real numbers. Multiplying (4.2) by (t - s)l-l 
and integrating from t* to t, we obtain (here and subsequently z = t - t*) 

1 
(1 -I)! s -’ (t - sy-1 [vo,c (s) - u(s)] as = c!Jz[ (4.3) 

t* 

In the case b < k the escaper’s special control is given by the formula 

z&c (s) = OZ! 
Then 

1 s (t - s)Pi 
(L--i)1 t* 

U,,, (s) CES = wr* 

(4.4) 

(4.5) 

In Sects. 5 - 7 we describe the escaper’s active behavior. 

6. Let the game (1.1) - (1.4) commence at the point 

Z*=(t*,X*,Y*), b&b o<p~)--y(~~=~(t,)<l 

and, for given c > 0 and o E E let it develop under the action of the special con- 

trol v o, e (s). Then, for t > t* the vector-valued function $ (t) can be written in the 
following iorm : 

9 (9 = T* (rt -I (1 f*)[# s (f - q-l [y”’ (s) - 23’) (s)] ds (5.1) 
t* 

z-1 

T* (z) = 9 (t*) + 2 dj~f; dj = (i!)-l(y$’ - x$‘), I <i < I - 1 
i==l 

Formula (5.1) is obtained by a Taylor series expansion of function 9 (t) , with a remain- 

der term in integral form. Substituting ~9) (s) and I/(‘) (s) from relations (1.1). (1.2) 

and integrating by parts, we obtain (see (4.3), (4.5)) 

9 w = T (4 + cm1 + h (t) +, T (z) = T, (7) f 4~’ 
HLY,f---L&X,), I=k 

I! &r = k&Y,)-z$), I<k 

(5.2) 
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l=k 

Z! z’h (t) = 

is (~-~)~[~~~(s,~(s))-~(~~~)(s)]rls, l<k 
t* 

Although the vector-valued function I% (t) depends upon the players controls, neverthe- 

less it satisfies (see (1.3), (1.4) (3.2) - (3.5)) the constraint 

Here 
t* 

cz (Tj*, 7) = or (@ (F (q*) + 

In addition, as can be verified, 

I 4 I < h* < h (rl*) < I’ @l*h 

o<r\<e* (5.3) 

‘p” (9)) 
(5.4) 

l<i<l-1 (5.5) 

6, If the estimate (2.3) is fulfilled for the orth~oM1 projection of curve (5.2) onto 
some two-dimensional subspace of space E”, then, obviously, it is fulfilled for curve 

(5.2) itself as well. Therefore, without loss of generality we can take E” as being two- 

dimensional. In En we choose an orthonormalized basis such that the vector 9 (i,) has 
the components (&, 0) in it. In this basis let 

dj = (dii, df), i = 1, e + s 1 1; w = (ml, 0%) 

h @I = P (0, hZ (q), T (7) = (2-l (‘c), Fa (z)) 

Then the equation for curve (5.2) is rewritten as follows : 

qJ1 (t) = E* $2 dj”Zj + (d + h1 (t)) 21 
j=l 

(6.1) 

Let us set (here and in further cases the dependency on z* is not explicitly noted) 

g (c) = (6 / c)t/*, E (c) Q (c ,’ 6)2*+’ (the final choice of E (c) is made in Sect. 7). 

BY r = r (c) f (0, 6” ‘?I*)) we denote the solution of the equation 

@ (r) G 7 - g (c) (e Ce)Y” 0 + h*ir (rl*) + (9 (rt** r) + (6.2) 

x-’ (77*P = 0 

existing because b (z) is continuous and /3 (0) < 0 and /3 (6 * (q*)) > CF. We denote 
the number t, -J- r (c) by t* 

Let us prescribe that on the interval It,, t “1 the escaper applies the special control 
ZL,, C (s) such that 

w’ E P/at, 3/4 cl, T1 (7 (c)J > 0 

6J* E I- 31&, - Vzcl, T1 (z (c)J < 0 
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(the final choice of 0 is put aside until Sect. 7)). Then, as is easily verified, 

IV (t*) I > 2% (4 P-’ @I*) > E (c) p-’ hi*) 

P @I*) = 1 + 6*-l (r*) -i- a2 @I*, z (c)) -I- x-l (q*) 

Since (see (3.2)) 

F (rl (t*)) > F (n*) - t#* (z (c))> F (7%) - a* -p (%J > 3F (112 - a* 
and, consequently, 

=?;= > F (%j*) -/- ‘p” (z (cf) (6.3) 

we have 
1 <P’ fr*) < n Ol (1”)) 

n(r)= {I +-$*-l(r)+ (al? (0 ( p(r);;-‘)3* )))4-* P(Q)! 

Hence 

E(t*)> IV(t*)I> II(;(;;*)) (6.4) 

The next stage of arguments is most essential in the proof of the evasion-of-contact 
theorem since it is precisely here that we determine definitively the quantity I (c) (and 

the quantity z (c)) and make the final choice of the vector w on the interval [t,, t*l. 

7. By p(t)and v(t) we denote the polar coordinates of a point ‘11 (t) of curve 
(5.2). We set 

a = WI + h’ (t), p = ws -j- h2 (t) (7.1) 

~ul~~plying relations (6.1) in succession by 1, z, I . . , ai-1, we obtain 

p (t) cos cp (it) ==’ g* -+ r: ajlzj + a+ (7.2) 
j-t 

*.......*......*...... 

j=l 

We treat these relations as a system of 21 linear algebraic equations in the ~nowns 

1,z, *.*, &. Solving it formally for the known unity, we find 

1 .D z_: D, 

where D is the system’s determinant, while D, is the determinant resulting from D by 
replacing the first column by the column of free terms of system (7.2). From the first 

column of D, we take out the common factor p (t) and we set D, = p (t) D*. Then 
we obtain p (t) D” --D (7.3) 

The estimate (see (5.5) ) 

for D* is obvious. 
(7.4) 

I D” I < (22)! IF (Q&P-~ 

The determinant D := D (a, fi) is a polynomial in a: and 13 , with coefficients 

depending on point z*. We see immediately that 
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Z-l 

D ta, PI = POP -I- 2 pijaiPj (pal = 5,‘) (7.5) 
i,j=Q 

Let p be the coefficient of polynomial (7.5) largest in absolutevalue. Then 

D (a, S) == PS (a, p>, lp I > %*l (7.6) 

Here s (CC, fi) is a polynomial of form (7.5), all of whose coefficients do not exceed 
unity in absolute value, and one of the coefficients equals unity. We examine this poly- 

nomial on two rectangles 

n, = (5c I 8 < a < 7c J 8, - c i 8, < 8 < c I 8> 

II,=(-7~/8\(a\(-5~/8, -c/8\<p\<c/8) 

The subsequent arguments are carried out for HI, because for fl[, the arguments and 

estimates are absolutely identical. 
Let b > u > 0, 6 > 0 and h be arbitrary real numbers, m be a positive integer. 

By Q (a, b, h, 6, m) we denote a familyof mth-degree polynomials, to be examined 
on the interval ]h - 6, h + 61, all of whose coefficients do not exceed number b 

in absolute value, but such that the absolute value of at least one of the coefficients is 
greater than or equal to a. 

Lemma 1. If 1 h 1 < 1 and P (z) = pa f p,x + . . . + pWxnt E Q (a, b, 
h, 6, m), then 

P* (1.8 = JJ (Y + 4 E Q (6 -2~b~~~(~-l~~)-l, i?V(f--- 
I h I )P, 0, 6, m) 

Proof. After simplification we have 

P’ (Y) = i p/c*i?; 

m 

pk* = 2 pjCjkhi-“, O<k,<m (7.7) 
k=O j=k 

So that 

Ip1’14b.2~~~~,h,i-k~2.b(l-,h,)-1. O<k<m 

If, however, k, is such that 1 pks 1 > a, then by virtue of (7.7) 

IPko*la!P,,~- ~=~~~~P~ii,~~l"~~-~~~a-2~b~h~(~-~h~~-l 

Q.&D. 
Let p (z) be a polynomial in 5~ to be examined on ]a*, b*J, We set 

iHx)Ij =,*~f~b*lP(41 
Lemma 2. 

6, m), then 
If 6 < 1 and P (x) = p,, + p,x + . . . + pmxm E Q (a, b, 0, 

IIP(~)II~u(~~~!)-~~“; a” = -6, b” = +S 

Proof, Having set J: = 62, we obtain P (s) = P* (z), where 

P” (.a)= ; (pact) Zk 
h-=0 

Therefore, P* (z) E Q (dm, b, 0, 1, m). Let I pko 1 >a. Then 
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11 dk@P* (Z)/dZ”~ Ii> 1 c&P (0)/d&J 1 = 1 J&O 1 @Qk*! > k,! 6”u 

By virtue of the Markov inequality (see 141) 

Hence by induction 

// p* (2) f] > k,! SMa ({m - k,)!)2 (m!)-* > a (amm!)-l 6” 
Q. E. D, 

The ~lynomial s (a, 6) can be looked upon as a polynomial in fi with coefficients 
depending ona i-1 I-l 

s(a,P)= SO@ f z (x wj) Pi 

Obviously I-1 

12 S+&&X~,<Y ;: Ial\< +<+ (7.8) 
i=O iZ0 

Let i0 and j0 be such that Sioja = I. Then 
Z-1 

P(M.) = z: qj,a’EQ(1,1,+, +, z-1) 
i=O 

Therefore, by virtue of Lemma 1. for c < (3*2’)-r 

P” (“1) E Q (1 - 3.2’“’ c, 2t+2, 0, c i 8, I - 1) c Q (l&, 2l*, 
0, G f 8, 1 - 1) 
y = a - 3c I 4, P* (y) = P (y + 3c I 4) 

In accord with Lemma 2 we can then find TO, 1 y,, I\< c / 8 , such that 

(P” (y3) 1 > A&-1, ii = (241-3 (2 - I)!)-1 (7.9) 

We fix a, =yo+3c/4~~5c/8, 7ci81. Then(see(7.8),(7.9)) 

s 6) = s (a,, 6) E Q (he’-‘, 8, 0, c / 8, 1) 

So that by virtue of Lemma 2 we can find PO, 1 fi,, 1 < c / tj , such that 

I s (a,, B,,) I > 1 s f&j) I > Ac~~-~, A = h (42” I!)-1 

Since the partial derivatives of polynomial s (a, j3) are bounded on the rectangle 

II,* = {SC ,’ 16 < a < 15~ / 16, - 3c / 16 < p < 3c / 16) 

by a constant A1 = 16.1.16113, we have 

I s (a, t 6% /3o + S/3) ( > ~/ZA.C~~-~ = r (c) (7.10) 

as soon as I 6a 1 < 6 (c), 1 Sf3 1 < 6 (c), where 

6 (c) = A *czI-l, A* I= min {l/16, A / (4A,)) 

We fix 
e fc) = EtC41~-‘z1f17 c* = min {6-2’-1, (A*)2t/6) (7.11) 

(the ~equali~ e (c) < (c / ti)‘r+l is then guaranteed) and we prescribe that on the in- 

terval it,, t*j the escaper applies the special control v,, e (s), where w = (a~, 60)~ 
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and (a,, fi,,) is a point of the nr , constructed during the arguments presented above, 

if P (z (c)) > 0, and (a,, pa) is a point of the Ii*, constructed absolutely analog- 

ously, if T’ (.t. (c)) < 0. Then by virtue of (5.3) and (7.10) 

I h (0 I < a trl*, z (c)I (z (c)P < (g (c) (a (c))““)“‘~ < 6 (c) (7.12) 

So that (see (7.6). (7.10) ) 

and. consequently, by virtue of (7,3), (7.4) 

P (t) > r (c) E,’ f(2 J)! (r (~*)a’-‘I-l, t Ez [t*, t “f (7.13) 

The upper bound for p (t) follows from (5.2). (5.5). (7.12) 

P (Q < E* -I- 71’ (VA (1 - V + I co + h tt) I + < E* + (7.14) 

26(c) (z (c)p* + c (z (C))“‘” 

Here we have used the inequality 1 w t_ h (t) 1 < C, stipulated by (5.3) and by the 
choice of w. 

8, Let us complete the proof of the theorem. We consider the case 1 = k. Let us 
estimate the quantity 

I(c)= IfI(t,k.(t))lu,,~(t)l’dt (6.1) 

Since, by the Lagrange theorem andfty virtue of (2.2), 

u (t, Y (t)) < u (t, 5 (t), y(1) (t), . . . , y (f-1) (t)) + (8.2) 
Pl (rl (9) Ix (t) - Y (t) I P (G x (t>) < P (4 x (0) (I + 
r (r (t)) I 32 (0 - Y (0 I 1 

and sin= I vu,, tt> I 2 < I u (t) I 2 + 1 o 1 2 U!) 2 + 21! I o I I u (t) I, 

J(c) Q 1, (4 -I- I, (c) -+- I, (c) (8.3) 

11 (c) = T5(4 Y (t))fG (t)pwt 
f* 

moreover, by virtue of the Cauchy-Buniakowski inequality 

I, (c) -< 2 (1, (c)p (I, (c))“~ 

while by virtue of the ineq~Iities (8, Z), (7.14) (7.12), (3.2) (6.3) 

(8.4) 
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11” (4 = s p (4 x (9) b (wt 
t* 

We choose a, = (o - p) / a. For the game point z = {t, X, Y} we denote the 
function 

Y (z) = 1 5(O) - y(O) 1 JE (q (t, x, Y)) - 2&* 
We set 

c, zz c$&r I (2-W (8.6) 

Now, let the escape commence (see Sect. 1) at the point z. = if,,, X,, Yo}, 
1 XO(‘) - Y$‘) I = %,-, # 0. Let us assume that the escaper conducts the escape induc- 
tively by cycles, so that each mth cycle (m > 1) consists of an interval of active es- 

cape of duration II, = 7 (c,), if m 2 2 and -rl = 0, if m = 1, during which the 
escaper, having chosen the vector w Min accordance with the method of procedure used 

in Sect. 7, applies the speciat control v(s) = I&,,,,,~~ (a), and of a succeeding interval of 

passive escape during which the escaper applies the control u (a) z 0 and whose dura- 
tion 8, is determined thus: 8, -= 0 if Y, = Y (z (T,_l + z,,)) < 0 and 0, 
is the smallest positive number for which Y (z (1’,_1 + T, + ~~)) = 0 if Y,>O. 
Here and subsequently 

T, = t,, T,, = i (ak + @kh m=1,2,. . . 
h^=2 

Then the following estimate (see (8.4) and the Cauchy-Buniakowski inequality) is valid 

for the escaper’s control : 

Sin= (a + n fq (Tk)) E (Tk) + 36 (ck)) < (1 -I- .5#, k = 2, . . . , from 
relation (8.5) follows m 

2 W*)<(~ +c*12 5 ~l"(%,((~ s.E*J2P2 
(8.8) 

k=z k-2 

the latter inequality is satisfied as soon as the pursuer, to whose behavior the escaper 
reacts, observes constraint (1.3). Further. by virtue of (8.6), (8.7) 

i 12 (4 < (l!Ja i ck2@ (ck) < E*2 
(8.9) 

k=2 k=Z 
So that (see (8.8)) 

T?R 

s 
Q (r, y (Qf iv (Ol”dt < (~~ I,(e,))‘l’+ ~~2~2~ck~~~~ @*“) 

to (1. + E*(p f 1))2< G2 ‘k=2 
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Let us prove that T, 3 + 00 as m -+ 03. By contradiction, if T, -+ b < $00 

as 1124 oo,tken m 

b - t, > x rlr > 5 g (C&(E(C# '( /Pk; Pk = n(q (Tk-l)), k =2, 3, ... 

Since the series lC=l k=2 

jj g(ck)(e (Ck))“’ = (6~*~,4~-s) jj ; 
k=2 k==2 

diverges, the sequence pk is unbounded, which by virtue of the continuity of the function 

?c (r) implies the unboundedness of the sequence q ( TK). However, the latter is false, 

because if we set 2’ (t) z u (t) za 0, t > b, then the functions u (t) and u (t) (al- 
ready constructed on the half-interval [to, 6)) are (see (8. 10)) the player’s controls, 
so that by virtue of the condition formulated in Sect. 1, the function 1 (1) = ?j(t, .X(f), 

Y (t)), being an absolutely continuous function of the parameter f > t, 111, is bounded 
on Ito, b] ,which is a contradiction. 

Passing to the limit as RZ --> r~ in formula (8. lo), we get that the constraint (1.4) 

imposed on the escaper’s control is satisfied. 

Let us obtain the estimate (2.3). On the passive segment the estimate follows from 
the definition of Y (z) 

$ (t) > 2 p* 1 n (rl (0) (8.11) 

On the mth active segment (m > 3) (see (?.13), (8. II), (6.3)) 

if 8,-r + 0, and (see (7.13). (6.4), (6.3)) 

E (t) > 
r (M(e (c,_dY 

(al)! T @l(O) (8.13) 

if 0,_, = 0. 

In order to complete the proof it suffices to set 

& m= min {2&*, r (cm) (2~) I (2t>!, f (c,) (E (c,&)” I (21)!} (3.14) 

nt > 3 

and to note that (8.12) holds on the first active segment if 8, + 0 and 

E(t) a 
r (~2) En2 , r (ca) E,d 

(“~)!(r(r(to,Xo,Y,l)))~~-~ ’ (21)! r Pl W) (8.15) 

if 0, = 0. SO that es = min (1, I (c2) / (al)!), E = E*. 

9, In order to complete the theorem’s proof for the case 1 < k, it suffices to set 

e * =;UlU<lS (9.1) 
and, having noted that the estimate 

I (c) < I, fc) < (CA6 (c)j 2 

is valid for the quantity I (c) [see (8. l)), to repeat verbatim the argument in Sect. 8, 
having formally set in them 1; (ck) = 0, k = 2, 3, . . . , and having replaced in them 
the previous value of E* by the one given in formula (9.1). Here, as is easy to see, 
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estimates (8.11) - (8.15) are preserved. The theorem is completely proved. 
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We determine the gyration numbers of the dynamic systems arising on the two- 
dimensional invariant tori in Kowalewska’s problem. We have shown that they 
equal the ratio of the periods of a hyperelliptic integral containing the Kowalew- 
ska polynomial. Using the general theorem on the reduction of equations on an 
n-dimensional torus, proved in the paper, the differential equations on the two- 

dimensional invariant tori mentioned are reduced by an invertible change of 
variables to the form cpi = oi where oi = const, i = 1, 2. We prove also that 

in the case of rapid rotations of the body the combined levels of the four first 

integrals of the problem consist of two tori ; the dynamic systems arising on these 

tori are isomorphic. 

1. Remark, on thr topological proportia of the combined la- 
vel, of ffrrt lntrgrrlr. The Euler-Poisson equations of the problem of the mo- 

tion of a heavy rigid body around a fixed point form an analytic system of differential 
equations defined in fi8 {z : pqryIy2ys}. There is an integral invariant in this system, 
whose density M (z) E 1 (i.e. the phase volume is invariant relative to a one-para- 
meter group gt of shifts along the trajectories of the Euler-Poisson equations). These 

equations always have three algebraic first integrals: the energy integral (H), the area 
integral (L) and the geometric integral (r). If the rigid body is a Kowalewska top, 

then there exists a fourth algebraic integral K. 
By E we denote the following set: 

E = {x : H = 6h, I, = 21, I? = 1, K = k2} (E C R’) 

It is compact, since the set {H = 6h, r = I} is bounded in R6 and E is closed. 


